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Abstract Bacteria account for a major proportion of
Earth’s biological diversity. They play essential roles in
quite diverse environments and there has been an increas-
ing interest in bacterial biodiversity. Research using novel
and eYcient tools to identify and characterize bacterial
communities has been the key for elucidating biological
activities with potential for industrial application. The cur-
rent approach used for deWning bacterial species is based on
phenotypic and genomic properties. Traditional and novel
DNA-based molecular methods are improving our knowl-
edge of bacterial diversity in nature. Advances in molecular
biology have been important for studies of diversity, con-
siderably improving our knowledge of morphological,
physiological, and ecological features of bacterial taxa.
DNA–DNA hybridization, which has been used for many
years, is still considered the golden standard for bacteria
species identiWcation. PCR-based methods investigating
16S rRNA gene sequences, and other approaches, such as
the metagenome, have been used to study the physiology
and diversity of bacteria and to identify novel genes with
potential pharmaceutical and other biotechnological appli-
cations. We examined the advantages and limitations of
molecular methods currently used to analyze bacterial
diversity; these are mainly based on the 16S rRNA gene.
These methods have allowed us to examine microorganisms
that cannot be cultivated by routine methods and have also

been useful for phylogenetic studies. We also considered
the importance of improvements in microbe culture tech-
niques and how we can combine diVerent methods to allow
a more appropriate assessment of bacterial diversity and to
determine their real potential for industrial applications.
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Introduction

The biosphere was formed by and is completely dependent
on the metabolism of microorganisms and on their interac-
tions with each other. Currently, it is estimated that there
are about 4–6 £ 1030 diVerent prokaryotic cells, exceeding,
by various orders of magnitude, all plant and animal diver-
sity [124]. Bacterial cells arose about 3.8 billion years ago;
they are microscopic, morphologically simple and are
widespread throughout all environments, including those
with extreme conditions [3, 44, 55, 69, 97, 103, 114]. The
long history and the importance of microorganisms help
explain the great morphological, physiological, and genetic
diversity of these forms of life [114]. This enormous
genetic variability is the result of rare mutations and recom-
bination events, which allow them to reply to environmen-
tal changes. Bacteria can exchange and acquire genes from
distantly related organisms by horizontal gene transfer
(HGT), consequently increasing rates of speciation, which
can be considerably higher than in eukaryotes [14, 52, 119,
123].

The fundamental unit of biological diversity and the
basis of taxonomic hierarchy is the species. However, most
bacteria cannot be isolated and cultured with current
techniques; consequently, natural bacterial diversity is still
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relatively unexplored. For more than 100 years, microor-
ganisms have been described and identiWed by culture
methodologies [36, 62, 97, 103]. During this period, there
has been immense progress in clinical microbiology, much
more than in environmental microbiology, due to the
importance of microorganisms for public health. Recently,
the astonishing diversity of microorganisms has been dis-
covered, along with their importance in providing environ-
mental services essential for sustained life on Earth.
Bacteria play important roles in biogeochemical cycles
(carbon, nitrogen, and other minerals), bioremediation pro-
cesses, energy conversion, biocatalysis, and natural product
synthesis; this makes bacteria important potential resources
for new industrial and biomedical processes [9, 71, 24].
Consequently, there has been increasing interest in the
exploration of natural bacterial communities and their ben-
eWcial aspects; such studies are required to fulWll the prom-
ise of bacterial biotechnology.

Bacterial species are regarded as a genomically coherent
group sharing a high degree of similarity in several diVerent
phenotypic and genomic properties that have been charac-
terized through a polyphasic approach. However, knowl-
edge about natural bacterial diversity is still limited, and
there are only 6,373 validly described species [32] (for
updates see http://www.bacterio.cict.fr). The diYculties
and limitations of the methods available for culturing bacte-
ria found in natural environments, such as soil and freshwa-
ter, has made the study of microbial diversity a diYcult and
complex eVort [36, 64, 84, 97, 98, 114]. Nevertheless, dur-
ing the last few years, advances and improvement of
molecular techniques based on DNA sequencing and analy-
sis of ribosomal gene sequences (mainly of small subunit
16S rRNA- SSU rRNA) of various prokaryotes has pro-
vided data that give considerable information on taxonomic
relationships, ecological roles and the evolution of bacterial
species found in environmental samples, without the need
for isolation and culture. These new techniques have

uncovered new bacterial functions and have revolutionized
our concept of the value of microbial diversity, which till
now has been largely undescribed [20, 27, 35, 36, 59, 63,
64, 72, 83, 97, 98, 114, 125]. Hence, bacterial ecology and
industrial microbiology have come together; biodiversity
studies have potential for important discoveries in both
Welds.

Approaches used to identify bacterial species

At present, it is widely accepted that it is necessary to use
various methods to identify and characterize bacteria spe-
cies and to study and determine the diversity of this
domain. A combination of many diVerent methodologies
has been directed toward analyzing phenotypic, genomic,
and phylogenetic characteristics for taxonomic purposes;
this combination is deWned as a ‘polyphasic approach’
(Fig. 1) [5, 15, 20, 37, 98, 117]. In practice, the meaning of
speciWc tests has been inXuenced by how they correlate
with DNA analysis for the identiWcation of a particular bac-
terium.

Characterizing phenotypes

The classical phenotypic tests have been used for morpho-
logical, physiological, and biochemical identiWcation of
bacteria and for biotechnological applications [44, 109].
Substrate utilization and bacterial product production pro-
Wles provide important data for studies of functional biodi-
versity. Phenotypic characterization has proven useful to
study and characterize genes that encode proteins, which
could have industrial applications (Table 1).

A combination of phenotypic and genomic information
is required for correct description and classiWcation of bac-
teria [15, 99, 113]. Recently, signiWcant developments in

Fig. 1 Useful culture dependent 
and culture independent meth-
ods. RFLP restriction fragment 
length polymorphism, ARDRA 
ampliWed rDNA restriction anal-
ysis, DGGE denaturing gradient 
gel electrophoresis, TGGE tem-
perature gradient gel electropho-
resis, SSCP single-stranded 
conformation polymorphism, 
FISH Xuorescence in situ 
hybridization
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various areas (chemistry, molecular biology, and bioinfor-
matics) have provided new techniques of improving our
knowledge of microbial diversity, as well as facilitating
taxonomic and biotechnological studies [82, 99].

DNA–DNA hybridization

Whole genome DNA–DNA hybridization has been used
for bacterial genotypic characterization for decades,
increasing the quality and quantity of information useful
for identiWcation, which was previously limited to pheno-
typic properties [99]. DNA–DNA hybridization was one of
the Wrst molecular researches [18] and until now remains a
cornerstone for bacterial species delineation [108]. This
standard technique allows for comparison and measure-
ment of genomic similarities between the total genome of
two species under standardized conditions. A group of
strains showing 70% or greater DNA–DNA similarities
and with 5°C or less in thermal stability between homolog-
uous and heterologuous heteroduplexes is considered to be
the same species [45, 58, 117, 122]. Nevertheless, this
method is arbitrary in its ability to evaluate the actual
sequence similarity between two whole genomes and to
suitably describe bacterial species [87, 90, 117]. Addition-
ally, DNA–DNA hybridization studies are time-consum-
ing; they allow the study of only a few bacterial clusters
and are not applicable to uncultured organisms, which
account for the majority of living prokaryotes [37, 58, 80,
87]. Despite the drawbacks and limitations of this method,
it has been one of the most important approaches in bacte-
rial species circumscription, as shown by Mechichi et al.

[79, 108]. They described two new species of the genus
Thauera and one species of the genus Azoarcus, using a
polyphasic approach. They used DNA–DNA hybridiza-
tion, which is an essential step for the diVerentiation of
strains that have been isolated from diVerent environments.
These strains degrade aromatic compounds, such as phe-
nol, benzoate, and toluene. The characterization of these
three new species demonstrates the importance of genome
research and it will be extremely important for analysis of
novel aromatic catabolic functions and for the use of these
bacteria as biocatalysts for the biodegradation and bio-
transformation of aromatic compounds [79].

Considering the signiWcant role of DNA–DNA hybrid-
ization assay and the diYculty to implement this technique
in routine laboratories, novel and alternative methods, such
as melting proWles in microplates, random genome frag-
ments, and DNA microarrays have been proposed to
improve or supplement this approach [11, 80, 85]. Micro-
arrays have potential as a rapid technique for environmental
and phylogenetic studies, allowing the analysis of a large
number of samples. An example of application is the rapid
detection of 90 antibiotic resistance genes in 36 strains of
Gram-positive bacteria (Bacillus, Clostridium, Enterococ-
cus, Lactococcus, Lactobacillus, Listeria, Staphylococcus,
and Streptococcus). Using this technique, three diVerent
genes involved in erythromycin resistance were detected in
Staphylococcus haemolyticus and three genes carried by
transposon Tn5405 were detected in Clostridium perfrin-
gens. These results demonstrated that microarrays make
rapid screening of antibiotic resistance genes possible and
that they can be useful for industrial and biomedical appli-
cations [93].

Table 1 Biotechnological 
importance of bacterial pheno-
type characterization

Tests for bacterial phenotypic
characterization 

Biotechnological application References

Tolerance to heavy metals Bioremediation [47]

Bacterial susceptibility to antibiotics Clinical and pharmacological applications [47]

[42]

Antibiotic production Pharmacological industry [7]

Fermentation patterns Food and dairy industry processes [41]

[112]

Enzymatic activities Pharmacological industry [91]

Food and dairy industry [57]

Biological control

Bioremediation

Carbon utilization Bioremediation [23]

Biological control

Industrial processes (agriculture, 
medicine, and food)

Probiotic features Food and dairy industry [94]

Public health
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RNA ribosomal (rRNA) genes

Ribosomal RNAs are ancient molecules, being primordial
participants of cell protein production machinery; they have a
ubiquitous distribution, are conserved between organisms
that are phylogenetically distant and are not aVected by envi-
ronmental changes [99]. Ribosomal RNA genes can occur in
variable numbers in diVerent organisms and are almost
unaVected by horizontal genetic transference mechanisms.
The combination of these properties makes these genes suit-
able for studies of microbial evolution and phylogeny [1, 12].

Bacteria have three genes that code 5S, 16S, and 23S
rRNAs, essential components of ribosomes involved in the
translation of messenger RNA (mRNA) for protein synthe-
sis. These genes are typically organized into an operon that
contains internal transcribed spacers (ITS), which vary
widely in length and sequences [1, 34, 61, 65]. Spacer
regions, especially those located between the 16S and 23S
rRNA genes, have more genetic variation than the other
regions that code rRNA genes, due to variation in length
and in the number of tRNA genes contained in the
sequences. ITS polymorphism can be useful for diVerentia-
tion of closely related bacterial genera and species [13, 20,
25, 61]. Bacterial species can have up to 15 copies of the
ribosomal operon in their genome [1, 34, 65].

Analysis of bacterial diversity

The 16S rRNA gene has several characteristics that favor
its use for molecular studies, including suitable length,
about 1,500 bp, the highly conserved regions among diVer-
ent and distant species and ease of its manipulation [4, 99].
This gene is generally weakly aVected by HGT; currently,
there is considerable information available in databases due
to its extensive and growing utilization in microbial taxo-
nomic studies. The properties of the 16S rRNA gene make
it a suitable tool for phylogenetic inferences [99].

Woese in 1970 proposed a phylogenetic classiWcation
system for prokaryotic species based on the divergence of
small subunit ribosomal RNA sequences (16S rRNA for
prokaryotes and 18S rRNA for eukaryotes). Comparative
analysis of SSU rRNA can elucidate evolutionary relation-
ships and diversity among organisms. Woese introduced a
view of the tree of life divided into three domains: Bacteria
and Archaea, both classiWed as prokaryotes, and Eukarya.
Inside the Bacteria domain, he described 11 divisions based
on nucleotide sequences of 16S rRNA of cultured microor-
ganisms [125]. This phylogenetic system, based on analysis
of 16S rRNA gene sequences, opened new perspectives and
became a useful model for studies of evolution and rela-
tionships among the various existing species [77]. There
has been interest in examining the enormous unknown

diversity of prokaryotes present in diVerent ecosystems,
based on information about the 16S rRNA gene in microor-
ganisms that cannot be isolated in culture. Finding <97%
16S rRNA gene sequence similarity in comparison with
known species has been regarded as a criterion for a new
species description.

Today, it is believed that more than 53 divisions exist in
the Bacteria domain, identiWed mainly through phyloge-
netic analysis of environmental samples that cannot be cul-
tured, based on 16S rRNA gene sequences. However, most
of the bacteria described in these new divisions based on
molecular analysis are not cultivable [63]. This opens pos-
sibilities for obtaining evolutionary and phylogenetic infor-
mation about new microorganisms, but frequently gives
little information about their functional role, ecological rel-
evance and genetic information about the diVerent species
of the community [54, 63, 81, 97, 104, 111].

Polymerase chain reaction (PCR)

PCR technology was developed in 1985 by Kary Mullis, and
has had such a strong impact and has been so incredibly use-
ful in many areas of science that the inventor received a
Nobel Prize. AmpliWcation of DNA by PCR has become
extremely useful for bacterial detection in heterogeneous
samples. Exploring bacterial biodiversity by PCR is the most
commonly used method in studies of 16S rRNA genes; the
information that is obtained can be compared with that from
other techniques through pattern analysis (Table 2), includ-
ing ARDRA, ampliWed rDNA restriction analysis [38, 68,
126]; DGGE, denaturant-gradient gel electrophoresis [106];
TGGE, temperature-gradient gel electrophoresis [8]; RFLP,
restriction fragment length polymorphism [73]; SSCP, sin-
gle-stranded conformation polymorphism [40]; evaluation
of sample size and replication; FISH, Xuorescence in situ
hybridization [2]; cloning and sequencing; probe hybridiza-
tion and microarrays. These techniques allow rapid and sen-
sitive detection of bacteria diversity independent of culture
methods and can also be used to identify metabolically
active compounds if the desired gene is conserved enough to
allow the design of speciWc primers.

PCR-based DNA Wngerprinting provides information
about diVerences in bacterial populations. Over the last
decade, there has been increasing interest in studying sul-
fate-reducing bacteria (SRB), which play an important role
in the degradation of organic matter, an essential process in
ecosystem and environmental remediation. Nested-PCR-
DGGE was used to study the diversity of SRB in samples
from mixed microbial communities, with high resolution
and reproducibility. The knowledge acquired in this study
proved to be useful in bioremediation processes and for
studies to improve pollutant removal eYciency [21].
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Aerobic thermophilic bacteria diversity isolated from
Irish soils was analyzed by ARDRA; sequencing of 16S
rRNA genes showed that an abundance of genetically
diVerent members of the genus Geobacillus predominated
in the sample. Geobacillus species were found to be
sources of diverse compounds (proteases, lipases, amy-
lases, and pullanases) with biotechnological applications
and of interest for industry. McMullan et al. described the
capacity of Geobacillus isolates to metabolize herbicides
and showed that these isolates are potential sources of
genes that would be useful for agricultural biotechnology
[78].

Sequencing of the 16S rRNA gene and comparative
analysis of the sequences is useful for understanding phylo-
genetic relationships among prokaryotes above the species
level. Nevertheless, as the more information we have about
16S rRNA gene sequences, the more evident it becomes
that they have limitations in their use in studies to distin-
guish closely related but ecologically distinct bacteria [90,
92]. Approaches based only on 16S rRNA gene sequences
are insuYcient to classify prokaryotic species and do not
reveal the true relationships among the genomes of micro-
organisms.

Limitations of 16S rRNA sequence analysis

The Wnding of more than one 16S rRNA gene sequence in a
single genome and variation in operons among strains of
the same species provides critical information on bacterial
diversity and evolution. The heterogeneity of 16S rRNA
gene sequences among operons of the same genome is not
an indication of the actual bacterial diversity [1, 19, 37,
105, 121]. Thermophilic microorganisms have the highest
divergence among 16S rRNA gene sequences within a sin-
gle genome; analyses have suggested that the rrnC operon
was acquired by HGT. Generally, the divergence among
16S rRNA gene sequences in the same genome is less than
1% [1]. High similarity can be found in 16S rRNA gene
sequences among some closely related microorganisms that
lack resolution at the species level, as has been described
for Bacillus, Ochrobactrum, Enterobacter and Taylorella
[49, 67, 75, 95]. The considerable stability of 16S rRNA
gene sequences and the low rate of evolution of this gene
sometimes do not permit the identiWcation of ecotypes;
consequently, other techniques that examine genomic and
physiological diversities and ecological niches may need to
be applied [60, 70, 116]. Jaspers and Overmann [60] iso-
lated 11 strains of Brevundiomas alba with identical 16S
rRNA gene sequences. Using a combination of methods,
they found great genetic diversity among strains from dis-
tinct populations with genetically determined adaptations
and concluded that these strains probably occupy diVerent
ecological niches. Another limitation is the use of a univer-
sal pair of primers for ampliWcation of 16S rRNA gene
sequences in studies of bacterial diversity. PCR artifacts,
such as preferential ampliWcation of certain sequence types,
generation of chimeric sequences and false positives due to
experimental contaminants, can give inaccurate informa-
tion about the actual diversity of microbial communities in
environmental samples [4, 20, 28, 34, 51].

New approaches to access bacterial diversity

Approaches based on housekeeping genes that exist in a
single copy have been suggested due to the heterogeneity of
16S rDNA and the implications of this heterogeneity for
studies of bacterial diversity and phylogeny [20, 37].
Hence, the use of other genes, such as rpoB, gyrB, recA,
dnaK, and hsp60 (also known as groel and cpn60) has been
more suitable to discriminate species for some groups [19,
43, 49, 70, 74, 95, 113]. An example is the use of the rpoB
gene sequence for rapid identiWcation of Bacillus and the
use of hsp60 for phylogenetic and taxonomic studies of
Enterobacter [49, 50, 56].

Multilocus sequence typing (MLST) is a new approach
that has been used to obtain genetic information for

Table 2 Advantages, limitations, and biotechnological applications
of genetic Wngerprinting methods

Advantages

Rapid and easy simultaneous comparison of diVerent 
environmental samples

Analysis of genetic diversity in a bacterial community

Analysis of active bacterial communities in the samples

Analysis of community structure after environmental changes

Detection of heterogeneity in 16S rRNA genes

Reproducible results

Limitations

Dependent on cellular lysis and nucleic acid extraction eYciency

PCR biases

Sequence information for phylogenetic studies is limited

DiYculty to access detailed functional data

DiYculties in the estimation of the number of bacteria in natural 
environments

Useful applications of these methods in biotechnological processes

Knowledge of bacterial communities and their role 
in biogeochemical cycling 

Development of environmental genomics and proteomics

Control strategies for environmental contamination

Bioremediation processes

Control of quality of food and dairy products

Agricultural management

Suppression of pathogens

Diagnostics and public health

Discovery of bioactive compounds in environmental bacteria
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characterization of distinct strains of bacteria within known
species, analyzing sequences of internal fragments of a set
of housekeeping loci (»7). MLST has been considered a
powerful tool for bacterial typing and has been developed
for several pathogenic bacteria, such as Vibrio sp., Neisse-
ria meningitides, Streptoccocus pyogenes, Staphylococus
aureus and Campylobacter jejuni [10, 22, 30, 33, 37, 113].
The combination of allele numbers leads to the discovery of
the sequence type. Feil et al. [33] concluded that variation
at a single nucleotide site within a meningococcal house-
keeping gene is more probable to occur as a result of
recombination than due to point mutation in bound N. men-
ingitidis clonal complexes. Thompson et al. [113] believes
that MLST will improve the knowledge of taxonomy, and
phylogeny of Vibrios indicated that MLST will improve
knowledge on the taxonomy and phylogeny of Vibrios.
MLST has been shown to be a very speciWc and unambigu-
ous method for the characterization of bacteria species;
recently, it was also used for non-pathogenic bacteria,
including Lactobacillus plantarum [22].

Multilocus sequence analysis (MLSA) is a more general
technique than MLST, suitable for genotypic characteriza-
tion of a more diverse group, using sequences of genes that
encode proteins, which are ubiquitous and are present in a
single copy of the genome and present at least in the taxa
under study. Bacterial identiWcation is Wrst made by
sequencing the 16S rRNA gene of an unknown strain, iden-
tifying it at the genus or family level and then determining a
set of genes and primers to be used to identify strains at the
species level using MLSA [37]. The MLSA approach has
been used to identify clinical and environmental enterococ-
cal species, using rpoA and pheS genes; it is an eYcient
screening method for the detection of novel species [83].

SpeciWc functional genes are other options for bacterial
diversity studies, whenever metabolic function is known for
cultured microorganisms. These genes are examined to
determine the relation between structure and function, such
as the genes pmoA and mxaF for methanotrophic bacteria
[6, 53] and nodD for Rhizobium [120]. Cloning and
sequencing of functional genes from environmental samples
is extremely useful for investigation of ecologically distinct
groups and classiWcation at the species level [88, 89].

Importance of culturing techniques

Traditionally, culturing recovers only a minute fraction of
bacterial diversity. This signiWcantly reduces our under-
standing of the actual physiological and metabolic proper-
ties of the community of microorganisms found in natural
environments [81, 92].

There is no doubt that the culture methodologies are still
important tools for the study of prokaryote diversity. Con-

tinued research is required and new methods need to be
developed for the isolation of newly identiWed organisms
that are discovered through techniques that do not depend
on bacterial culture. Culture is still needed to help under-
stand the characteristics and properties of these groups and
their contribution to the immense existing prokaryotic
diversity [20, 54, 81, 97, 103].

Bacterial populations that are phylogenetically closely
related can be distinct physiologically (deWnition of micro-
diversity), while phylogenetically distant species can have
physiological similarities and can coexist in the same natu-
ral environment [60, 99].

Though we can obtain phylogenetic data about uncultur-
able microbes isolated from natural environments, normally
there is no means of obtaining information about their
genetic and ecophysiological characteristics. However, the
data obtained through molecular methodologies using 16S
rRNA gene sequences are very important for our eVorts to
develop and improve culture methods for bacteria isolation
that will allow studies of morphology, physiology, abun-
dance, and distribution in natural habitats [60, 99]. Nowa-
days, some progress has been made in this area, in the
development of new methods of culture that allow the iso-
lation of bacteria previously not cultivable, in order to
explore the potential of these microorganisms and to under-
stand their ecological role. These studies have associated
new culture techniques with analysis of 16S rRNA gene
sequences, opening new perspectives and improving our
knowledge about bacterial communities in many ecosys-
tems [27, 29, 46, 59, 63, 76, 85, 92, 107]. When these meth-
odologies are associated, most of the 16S rRNA gene
sequences analyzed from clones of libraries constructed
from total DNA extracted directly from environmental
samples are found to be diVerent from sequences obtained
from cultivable bacteria isolated from the same sample,
identical sequences rarely occurring [29, 92]. However,
16S rRNA gene sequence libraries have more objective
data than those obtained with culture techniques. The com-
bination of the two methodologies will likely provide addi-
tional information about the diversity and physiology of the
natural bacterial community, giving relevance to the results
obtained with the polyphasic approach [26, 27, 29, 76, 92].
Research with cultured bacteria that have been isolated is of
enormous relevance for our knowledge of this practically
unexplored universe, since bacteria perform essential roles
in various ecosystems.

Metagenome: a function and sequence-driven approach

Nowadays, one of the most widely adopted strategies for
studying microbial diversity is the metagenomic research. A
metagenome is the entire genetic composition of microbial
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communities of an environment; this approach is based on
direct isolation of total DNA in environmental samples,
construction of libraries and the ampliWcation of 16S rRNA
genes and functional genes to study the total diversity,
physiology, ecology and phylogeny of bacteria that cannot
be cultivated in the laboratory (Fig. 2) [71, 100, 110, 111,
118]. Such investigations aim to reveal and understand the
relationship between community composition and func-
tional diversity in natural microbial ecosystems.

Metagenomic research is useful to exploit the unknown
bacterial diversity in diVerent environments; it can be used
to discover novel genes and to increase our knowledge on
bacterial ecology and physiology [17, 110]. The 16S rRNA
gene accounts for a minor fraction of the average prokary-
otic genome and it does not give information about the
physiology of the bacteria [97]. Metagenomic approaches
using 16S rRNA gene sequences as a phylogenetic marker
have been used to characterize uncultivated prokaryotes
and can help to discover metabolic functions, enhancing
our knowledge about bacterial ecology and phylogeny [86,
96, 110, 115].

We can use metagenomic sequences to help understand
how complex microbial communities function and how
bacteria interact within these niches. The diverse bacteria in
a natural environment can be a complex chemical source of
many undiscovered biodynamic compounds, with potential
for bioprospecting. New antibiotics, enzymes and proteins
have been identiWed by functional analysis of metagenomic
libraries, including turbomycin A and B, lipases, amylases,
nucleases and hemolytic activities (Table 3) [39, 96, 100].
Metagenomics thereby has two main goals: the identifying
novel genes and increasing our understanding of microbial

ecology [71]. This approach is very promising for novel
biochemical and ecological discoveries, though develop-
ment and improvement of new methodologies is essential
for us to take advantage of this data.

Futures perspectives

All of the approaches that are available today have advanta-
ges and limitations, though none of them provide complete
access to the extremely important and complex bacterial
world. These new techniques, which are in constant devel-
opment, have provided powerful and important conWrma-
tion of previous phenotypic and genotypic studies of
bacteria. The combination of diVerent methods is still the
most suitable way of having a better understanding about
diversity, phylogeny, ecology, evolution, and taxonomy of
the largest group of living organisms on Earth—the Prok-
aryotes. Several questions remain to be resolved and the
collaboration of taxonomists, microbiologists, and molecu-
lar biologists is essential and very important for the integra-
tion of the diVerent research methods to allow for a proper
assessment of microbial diversity and its real potential.
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